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Dynamics of Mg-Zn alloy, viewing the glass 
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The molten Mg-Zn alloy has been treated as a single-component system within the 
framework of the Ashcroft pseudopotential formalism and to evaluate the pair potential. The 
effective core radius was calculated using the concept of Wigner Seitz's sphere. The 
longitudinal and transverse phonon frequencies were evaluated using the derived pair 
potential in the random phase approximation. Dynamic variables, namely, velocity 
autocorrelation function and power spectrum, have also been calculated, through the use of 
the theory of Glass and Rice in static harmonic approximation. 

1. Introduction 
Investigations of both static and dynamic properties 
of liquids form an important area of research both 
from the theoretical and experimental point of view. 
The so-called dynamic properties in the molten state 
provide the basis for deciphering the atomic structure 
and vibrational dynamics in terms of interatomic for- 
ces [1-3]. 

In the present work we have evaluated the effective 
interatomic potential of molten MgsoZnso alloy using 
pseudopotential formalism, which has been proved to 
be very successful in understanding the structure and 
dynamics of molten metals and alloys [4-8]. We have 
treated the binary melt as a one-component system, 
analogous to a liquid metal. The effective pair poten- 
tial generated is used in computing the velocity auto- 
correlation function and power spectrum. Further, the 
longitudinal and transverse phonon frequencies are 
estimated and then the elastic constants, using the 
same form of potential. 

2. Theory 
The effective pair potential is evaluated by treating the 
electron-ion coupling through the use of the 
pseudopotential concept [9] and linear screening the- 
ory. The expression for the pair potential takes into 
consideration both the direct electrostatic repulsion 
between the ions and the indirect interaction involving 
electron screening. The expression is as follows [10] 

~(r) (ze)2 - + 2(ze)2 ~FN(k)exp( - ikr) dk (1) 
r 7~ 

The energy wave number characteristic function, FN(k), 
involves several other parameters which have been 
given elsewhere [11]. The binary melt Mg-Zn has been 
treated as a one-component metallic fluid with effective 
mass, Meff, and effective number density, Peff 

M e f  f = C 1 M  1 + C2M 2 (2) 

Deft ~ r i p  1 + C2D 2 (3) 
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where C 1 and C 2 a r e  atomic fractions of the species 
1 and 2. Here 1 stands for magnesium and 2 for zinc. 
The effective charge is written as 

Zef f ~--- z IC 1 -~ z2C 2 (4) 

and the effective Fermi wave vector as 

kfef f = ( 3x2zeff Pelf) 1/3 (5) 

Thus the usual form of the ion-ion interaction poten- 
tial, ~(r), can be conveniently rewritten in the follow- 
ing way 

= 9(/_,Zeffe, 2 . 
~Deff (Zeff e)~2r + - -  ) kr 

Sin kr 

Cos2 (kr%ff)I  q) - 1J (6) 

The effective empty core radius, r%ff used in equa- 
tion 6, is related to the Wigner-Seitz's radius of the 
effective atom, and is given by [12] 

rceff = [0.51 ralloyZeff - 1 ]  (7) 

where 
(4/3)nr3noy = C1(4/3)xr~ + C2(4/3)~ra~ (8) 

and rx and r 2 are .the Wigner-Seitz's radii of species 
1 and 2 and C1 + C2 = 1. 

In the collisionless regime [13], for times smaller 
than the relaxation time which is of the order of 
10-12s, we may treat a liquid as a quasi-crystalline 
structure with a characteristic frequency, c%. In anal- 
ogy with the theory of solids, a simple model which 
can be considered for liquids, is that of a Brownian 
particle diffusing in a harmonic well of frequency ~0o. 
The characteristic frequency is that frequency with 
which the maximum number of atoms vibrate in the 
well. 

The most simple and straightforward way to deter- 
mine the dynamic correlation in liquids, is to start 
from the basis of single-particle motion. Utilizing the 
concept of Brownian motion of particles, we can study 
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the theories of transport in dense fluids [14], and then 
compute the dynamic correlation functions. We use 
the time-dependent Langevin equation which shows 
the dependency of the transport coefficient on the 
wave vector and frequency, and the theory of Glass 
and Rice [15] in static harmonic approximation to 
evaluate the velocity autocorrelation function and 
power spectrum, in molten Mg-Zn alloy, treating the 
binary melt as a one-component system like a liquid 
metal. This has been done by introducing the con- 
cept that the motion of "effective atoms" in an alloy 
is analogous to the single-particle motion in liquid 
metals. 

The differential equation they obtained is 

d2~ d~ 
dt ---T + -dT + o30 = 0 (9) 

where ~ = (v( t )v(O)) / (v2) ,  @2)  being the average 
thermal velocity. The solution for the above equation 
can be written as 

~(t) = exp( - 130t/2) [cos ({ t) + 13o/~ sin ({ t)] (10) 

where 

and 

~2 = o3~_[32/4 (11) 

~o = ( M D / k B T )  o3~ (12) 

where M and D are the effective mass and diffusion 
coefficient of the alloy (see Table I). 

Apart from the velocity autocorrelation function 
which defines the microscopic motion of atoms during 
short times, another important dynamic parameter is 
the power spectrum, g(o3), which is actually the cosine 
Fourier transform of ~(t). It is given by [15] 

kH T.  
g(o3) = ~,l~) j dt cos(o3t)~(t) (13) 

Liquids unlike solids, do not form a regular array, the 
atoms being more mobile than in solids. Hubbard and 
Beeby [16] first considered a cold amorphous solid 
which is in a disordered state and finally developed 
a theory by generalizing in a straightforward fashion, 
to allow for the motion of atoms in the disordered 
system. They thus obtained the following expressions 
for the longitudinal and transverse phonon frequencies 

I 3sinker 6coskcr 6sinkcr~ 
o3~(k) = o3o 2 1 kcr (krr) ~ + (kc)3 J 

(14) 

3cosk~ 3sinkcy 1 
o3~-(k) = o3o z 1 (k(y)2 ~ j (15) 

where 

o30 = 4rtPaf j qb;'ff(r) (16) 
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Figure l Effective interaction potential of MgsoZnso melt at 926 K. 
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Figure 2 Velocity autocorrelation function ~(t) versus t curve. 
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Figure 3 Power spectrum g(a)) versus o curve. 

3. Results and discussion 
The interaction potential calculated through Equa- 
tion 6 shows a hard repulsive part followed by an 
attractive well (see Fig. 1). The oscillations at large 
r are less in the sense that the amplitude dampens 
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quickly because the coulomb repulsive potential dom- 
inates over the oscillations due to ion-electron-ion 
interactions. 

The velocity autocorrelation function, ~(t), for mol- 
ten Mg-Zn alloy as computed, shows rapid initial 
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Figure 4 L o n g i t u d i n a l  a n d  t r a n s v e r s e  p h o n o n  d i s p e r s i o n  c u r v e  a n d  

structure factor S(k) versus k curve. 

decay, obeying the boundary condition that 
Lt t . o~ ( t )  = 1. It then attains a negative minimum 
and ultimately approaches zero in an oscillatory man- 
ner (see Fig. 2). The oscillations in the long-range part 
account for the collective nature of forces by the sur- 
rounding atoms. The cosine Fourier transform of the 
velocity autocorrelation function gives the power 
spectrum curve, 9(0)), when plotted against 0). The 
importance of this curve is that the maximum value of 
0), at which 9(0)) has its peak (Fig. 3), corresponds to 
the characteristic frequency 0)o, with which maximum 
number of atoms vibrate in the well (see Table I). 

The motion of effective atoms are then studied 
through the collective excitations by computing the 
longitudinal and transverse phonon frequencies using 
the theory of Hubbard and Beeby [16]. The dispersion 
curves so obtained reproduce all the characteristic 
features, as expected (Fig. 4). 

In the low wave-vector region, both the dispersion 
curves are linear and have the characteristics of elastic 
waves. Quite significantly the minima in the longitud- 
inal dispersion curve almost coincides with the princi- 
pal peak position of the structure factor curve, as 

predicted by Bhatia and Singh [17] and Takeno and 
Goda 1-13] (see Fig. 4). Theoreticians and experi- 
mentalists are of the opinion that the minimum arises 
from a process analogous to the unklapp scattering in 
crystalline solids and the sharp first maxima in S(k) 
acts like a smeared reciprocal lattice vector. The oscil- 
lations are predominant in the longitudinal phonon 
modes as compared to the transverse ones, showing 
that the collective excitations in the large k region are 
due to longitudinal phonons only. 

The elastic constants Cl t and C~4 can be evaluated 
from the slope of the phonon dispersion curves and 
compared with those obtained from Schofield's equa- 
tion [-18] which can be written as 

Clt = peffkBT 3 + ~ -  + (17) 

where 
P e f f  g ~ 

I1 = 2--~BTjgtr)rqb'(r)dr (19) 

10eff e - " 2 It 
12 = 2--~-BTJg(r)r qb (r)dr (20) 

Knowing Cll and C44, C12 can be calculated using 
Cauchy's relation 

Cll = C12 + 2C44 (21) 

The values of the elastic constants obtained show 
good agreement with each other (Table II). 

The isothermal compressibility, 13T, can be obtained 
from C11 using the following expression 

Cll = 7/l~x (22) 

where 7 is the specific heat ratio, which is assumed to 
be unity. 137 can also be calculated from the long-wave 
limit structure factor S(0) using the equation 

S(O) = pk.  T~T (23) 

Further we know that 

1/~T = 9w(V 2 -  4 V2T/3) (24) 

where Pw is the weight density. The calculated value 
of 13T using this equation comes out to be 7.89. All the 
[~T values obtained through different equations are 

TABLE II Values of elastic constants 

Elastic constant (1011 dyn cm-2) 

From o(k) versus k curve From I1 and I2 integrals 

C11 1.39 1.35 
C44 0.54 0.60 

TABLE I Parameters obtained from present calculation, temperature 926 K. 

Diffusion coefficient (10-5 cm2s-1) Characteristic frequency, o)0 (1013 s - t )  

From theor, calc. [20] From present calc. From diff. coeff. From g(c0) versus co From present calc. 

5.45 5.46 1.71 1.65 1.68 
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TABLE I I I  Values for isothermal compressibility 

Isothermal compressibility (10-12 cm 2 dyn-  1) 

From Ca 1 value obtained From theor, calc. 1-20] From long-wave limit S(O) From Eq. 24 
from 11 and 12 integrals 

7.12 7.17 7.68 7.89 

T A B L E  IV Values for Debye temperature 

Debye temperature (K) 

From mean value From Eq. 25 From Eq. 26 
of pure species 

270.0 270.22 267.78 

shown in Table III. They show satisfactory intercon- 
sistency. 

Further, from the low-frequency values of velocity 
VL(0) and va-(0) obtained from phonon frequencies, we 
can evaluate 0D, the Debye temperature through the 
following equation 1-17] 

h2n 9 /'1 2"~ 1/3 
0 o  - + (25)  

which comes out to be 270.22 K. 0o values for magne- 
sium and zinc are 290 and 250 K, respectively 119]. 
The mean value is thus 270 K which is quite close to 
the value obtained through Equation 25. 0D can also 
be calculated from the following relation 

1 P1 P2 
+ (26) 08 081 02o 

where 0OX and 0D2 are the Debye temperatures of the 
pure species and Pl and P2 are their respective atomic 
fractions. The value comes out to be 267.78 K. All the 
calculated values thus show good agreement with each 
other (see Table IV). 

4. Conclusion 
It is observed that the calculated effective interaction 
potential using the pseudopotential formalism with 
the "effective atom" concept gives a satisfactory de- 
scription of dynamic, elastic and thermal properties of 
MgsoZn5o melt, at 926 K. 

Acknowledgements  
Both authors (RVGR and UB) thank DST, CSIR and 
INSA for financial support. 

References 
1. J. HAFNER, "Amorphous Solid and Liquid State" (Plenum 

Press, New York, 1985). 
2. Y. WASEDA, "The Structure of Non-crystalline Materials: 

Liquids and Amorphous Solids", (Mc Graw-Hill, New York, 
1980). 

3. J. HAFNER, "Glassy Metals I, Topics in Applied Physics", 
Vol. 64 (Springer, Berlin, 1981). 

4. J. HAFNER, Phys. Rev. A 16 (1976)351. 
5. Idem, J. Phys. F 6 (1976) 1243. 
6. N.S. SAXENA, M. RANI, A. PRATAP, PRABHU RAM and 

M. P. SAXENA, Phys. Rev. B 38 (1988) 8093. 
7. M. RANI, A. PRATAP and N. S. SAXENA, Phys. Status. 

Solidi (b) 149 (1988) 93. 
8. R.V. GOPALA RAO and U. BANDYOPADHYAY, Ind. J. 

Pure Appl. Phys. 30 (1992) 53. 
9. N.W. ASHCROFT, Phys Lett. 23 (1966) 48. 

10. M. SHIMOJI and T. ITAMI, "Atomic Transport in Liquid 
Metals", (Trans Tech, Aedermannsdorf, Switzerland, 1986). 

11. K. C. JAIN, N. GUPTA and N. S. SAXENA, Phys. Status 
Solidi (b) 162 (1990) 395. 

12. J. HAFNER and V. HEINE, J. Phys. F. t3 (1983) 2479. 
13. S. TAKENO and M. GODA, Proof. Theor. Phys. 45 (1971) 

331. 
14. S. A. RICE and P. GRAY, "The Statistical Mechanics of 

Simple Liquids" (Interscience, New York, 1965). 
15. L. GLASS and S. A, RICE, Phys. Rev. B 176 (1968) 239. 
16. J. HUBBARD and J. L. BEEBY, J. Phys. C 2 (1969) 556. 
17. A.B. BHATIA and R. N. SINGH, Phys. Rev. B 31 (1985) 

4751. 
18. P. SCHOFIELD, Proe. R. Phys. Soe. 88 (1966) 149. 
19. MOLWYN HUGHES, "Physical Chemistry" (Pergamon 

Press, London, 1961). 
20. R.V. GOPALA RAO and U. BANDYOPADHYAY, J. Phys. 

Condensed Matter. C1 (1990) 3879. 

Received 11 June 1993 
and accepted 22 July 1994 

1068 


